TitleShort-term partitioning of C-14-[U]-glucose in the soil microbial pool under varied aeration status
Publication TypeJournal Article
Year of Publication2004
AuthorsSantruckova, H, Picek, T, Tykva, R, Šimek, M, Pavlu, B
JournalBiology and Fertility of Soils
Volume40
Pagination386–392
Abstract

The effect of soil aeration status on carbon partitioning of a labelled organic substrate (C-14-[U]glucose) into CO2, microbial biomass, and extra-cellular metabolites is described. The soil was incubated in a continuous flow incubation apparatus under four different aeration conditions: ( 1) permanently aerobic, ( 2) permanently anaerobic, ( 3) shifted from anaerobic to aerobic, and ( 4) shifted from aerobic to anaerobic. The soil was pre-incubated for 10 days either under aerobic or under anaerobic conditions. Afterwards, glucose was added ( 315 mug C g(-1)) and the soils were incubated for 72 h according to four treatments: aerobic or anaerobic conditions maintained, aerobic conditions shifted to anaerobic conditions and anaerobic conditions shifted to aerobic conditions. Carbon partitioning was measured 0, 8, 16, 24, 48 and 72 h after the glucose addition. In permanently aerobic conditions, the largest part of the consumed glucose was built into microbial biomass (72%), much less was mineralised to CO2 (27%), and only a negligible portion was transformed to soluble extra-cellular metabolites. Microbial metabolism was strongly inhibited when aeration conditions were changed from aerobic to anaerobic, with only about 35% of the added glucose consumed during the incubation. The consumed glucose was transformed proportionally to microbial biomass and CO2. In permanently anaerobic conditions, 42% of the consumed glucose was transformed into microbial biomass, 30% to CO2, and 28% to extra-cellular metabolites. After a shift of anaerobic to aerobic conditions, microbial metabolism was not suppressed and the consumed glucose was transformed mainly to microbial biomass (75%) and CO2 (23%). Concomitant mineralisation of soil organic carbon was always lower in anaerobic than in aerobic conditions.